去掉不需要的分类
代码
# gss_cat 是tidyverse 内置的数据
# view(gss_cat)
levels(gss_cat$race)
[1] "Other" "Black" "White" "Not applicable"
代码
Other Black White Not applicable
1959 3129 16395 0
代码
gss_cat %>%
mutate(race = fct_drop(race)) %>%
select(race) %>%
table()
race
Other Black White
1959 3129 16395
调整分类的顺序
代码
gss_cat %>%
mutate(race = fct_drop(race),
race = fct_relevel(race, c("White", "Black", "Other"))) %>%
select(race) %>%
table()
race
White Black Other
16395 3129 1959
让柱状图按大小顺序排列
代码
gss_cat %>%
mutate(marital = fct_infreq(marital)) %>%
ggplot(aes(marital)) +
geom_bar(fill = "purple")
代码
gss_cat %>%
mutate(marital = fct_rev(fct_infreq(marital))) %>%
ggplot(aes(marital)) +
geom_bar(fill = "purple")
分组均值并排序
代码
gss_cat %>%
summarise(meantv = mean(tvhours, na.rm = T),.by = relig) %>%
mutate(relig = fct_reorder(relig, meantv)) %>%
ggplot(aes(meantv, relig)) +
geom_point(size = 4, color = "steelblue")
调整类别顺序
代码
gss_cat %>%
count(partyid)
# A tibble: 10 × 2
partyid n
<fct> <int>
1 No answer 154
2 Don't know 1
3 Other party 393
4 Strong republican 2314
5 Not str republican 3032
6 Ind,near rep 1791
7 Independent 4119
8 Ind,near dem 2499
9 Not str democrat 3690
10 Strong democrat 3490
教学视频
Using R programming to manage categorial variables or factors using the forcats
package
回到顶部